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Abstract 

Cartan's geometric theory of partial differential equations is applied to a system of 
Schr6dinger equations. It is shown that the choice of a Riemann manifold which is a 
torus is equivalent to using a many-body neutron and proton potential commonly used 
in nuclear theory. The theory is applied to spinless, ground-state systems using the 
Dirichlet principle to minimise the energy, to obtain the neutron-proton ratios, Coulomb 
and binding energies of nuclei. A shell structure naturally manifests itself from the choice 
of the manifold. 

In earlier papers (Ramanna, 1968a, b) the geometric theory of partial 
differential equations due to Cartan (Hermann, 1965) was applied to a 
system of Schr6dinger equations to determine its characteristics by the 
method of determining an appropriate manifold of the exterior differential 
system associated with the partial differential equations. It  has been shown 
(Ramanna, 1968a, b) that several nuclear characteristics of spinless, ground- 
state systems, such as Coulomb energies, binding energies and shell struc- 
ture, can be obtained by assuming the manifold to be a torus which is also 
a Riemann surface. The Dirichlet principle was used to minimise the energy. 
In this investigation we summarise the previous results and show that this 
manifold corresponds exactly to the many-body neutron and proton nuclear 
potential commonly assumed in nuclear theory. The chosen geometry of 
the partial differential equations predicts a strong repulsion at small 
distances for both nucleons and a Coulomb term for protons. The potentials 
obtained in this manner give the potentials in a many-body system, as the 
entire assembly is taken into account by the nature of  the solutions. 

Consider two bounded quantum mechanical systems described by the 
following two SchfiSdinger equations each defined over a domain, 

h2 02 ~l(Xl' tl) -~ Vl(Xl, tl) @l(X1, t l )  = ih  0@1 (Xl' tl) 
2m Oxl 2 Otx (1) 

h 2 0 2 ~2(x2, t 9  
2m Ox2 z + V2(xa, t2) ~bz(x2, t2) = ih 0~b2 (x2, t2) 

Ot2 (2) 

Here VI and V2 are taken to be negative. 
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The two systems have the same mass and are considered to be spherically 
symmetrical, so only one coordinate is used to describe the space. The 
coordinate system of each domain is locally Euclidean, and in general the 
two equations represent two different problems. If, however, the domains 
overlap in a specified way, the two equations hold simultaneously in the 
region of overlap and this invariance implies that ~bl and ~b 2 are related 
to one another. If  the region of overlap is a plane, the ~b's become identical 
and the two equations represent the same system. If, however, the overlap 
is over a surface which is not a plane, a more complicated relation exists 
between the coordinate systems which couple the two equations. A surface 
over which locally Euclidean coordinate systems overlap is called a manifold 
(Flanders, 1963). We show that the form of the relations connecting the 
coordinate systems which define the manifold also determines the nature 
of the nuclear potential inside a many-body system. The manifold used by 
Ramanna (1968a, b) gives rise, in special cases, to a neutron and proton 
potential having a strong repulsive term at short distances and a Coulomb 
term in the case of the latter, thereby substantiating the successes of the 
earlier work. 

We now restrict ourselves to harmonic transformations, i.e. to such 
transformations which obey the Cauchy-Riemann relations because 9ftheir 
unique property that the total energy of the system is minimised. It is shown 
later, and by Ramanna (1968a, b), that for systems obeying Schr6dinger 
equations and for transformations defined below, the total energy is auto- 
matically minimised through the Dirichlet principle. 

Let the transformation law relating to the coordinate systems be given 
by the Cauchy-Riemann relations 

Ox: Ot~ Oxl Otl and (3) 
OX 2 Ot2 Ot2 OX2 

where x and t are along the real and imaginary axes, respectively. A manifold 
over which such coordinate systems are defined is called a two-dimensional 
Riemann surface. 

We define 

Ox~ Otl 
P Ox2 Ot2 

OXl Otl (3a) 
q - Ot2 Ox2 

If  one assumes that (xl, tO and (x2, t2) a r e  independent of each other, i.e. 

OXl = O, OX2 - -  0,  C3tl = 0 a n d  Ot2 
Otl Ot2 OX1 OX2 

- 0  
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then by straightforward algebra, and using the chain rule for derivatives, 
it can be shown that the following relations also hold: 

Op Oq Op Oq 
m 

Oxx Oq ' Ot 1 OX 1 
(4) 

Let ~2(xz, tz)=oJ(xl,h)~bl(xl,tl) where og(Xl,tl) is a complex valued 
function of xa and q. This implies that the wave function in one domain 
looks distorted in space and time when observed from the coordinate 
system of the other domain. 

Using the coordinate transformation of the (x2, t2) into (x~, t~) as pre- 
scribed in (3) and (4), and transforming equation (2) to the (Xl,q) co- 
ordinate system, we get 

0 2 ~b I 0~1 [2 00) 2q 1 &o 1 Op + q 0!) 2mqi] 
O X l ~ ~- ~lX l [ ~O ~lX l ~- - -  --  - -  -~ p -[- p coot I ~Xl pEOt 1 hp2J 

02 ~b I q2 02 ~b I O~bl [ q 1 &o 
+ 2 q - -  + p2 - -  + 0~-1 [2p~  ~Xl ~ p Oxl Ot! Otl 2 

2q 2 1 009 
p2 co 0tl 

~ Op + q_Op 
p Ot~ p2 OX x 

2mi] [10203 2q 1 02 oJ 
p to 0xl 0tl 

q21 02oj 1 OoJ {10p . q Op 2mqi\ 
p2o~ot12 +~o~p~*~+~p~)  

l&o(_l_Op_~ q Op 2rni~ 2mV2] 
-~- o) Ot I \ pot  1 p2 0x 1 hp ] ~- h ~ ]  = 0  (5) 

Comparing this equation with the Schr6dinger equation (1) in the region 
of overlap, the following relations hold" 

2 q- 1 0o~ q2 1 Oeo 1 Op q Op 2mi -2mi 
p c o 0 ~ x ~ + 2 ~ O t l  pot, ~p20x 1 h p -  h (6) 

1 02co 2q l  02oj 
- - - - @  
o~0xl 2 p coOxlOtl 

q2102co+~0o9{1 Op qOp 2mqi~ 
p2coOq2 f f~xl \pOxl+~Ofi+~p 2 ) 

l &o( l Op + q Op 2mi~ 2m 
+ ; ~ - p ~  p20x 1 hp/+h~-~(V2-fVl) =o 

0q~112 0o3 2q l Oo~ + I Op + q_ Op + 2mqi ] 
p oJ Otl p ~ pZ Ot 1 ~pZ j 

+ 2q 02 ~b 1 
p Oxl Otl 

(7) 

q2a2~b l=O (8) 
+p~ Ot~- 
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In order to understand the physical implications of these transformations, 
we consider the following approximations corresponding to a time- 
independent case: 

(a) 0tl 
and (9) 

(b) 0~l = 0 )  

(a) implies that the wave functions in one system appear distorted only 
spatially when viewed from the other, and (b) implies that any solution 
of the equations must make p independent of t and yet satisfy equation (4). 
We see later that the doubly-periodic functions of Weierstrass satisfy this 
requirement. 

Eliminating o~ from equations (7) and (8), and separating the real and 
imaginary parts, we get (Appendix): 

02P l [ O p ] 2 +  2mz 2 2 4m 
P ~ x Z - - ~ x ~ ]  h ~ ( P - 1 ) ( p 3 - p - 2 q ) = ~ ( V f - p Z V 1  ~) (10) 

2 m { p  3 ) O p  4m ~pq \ - 2pZ - q 2 - OXl h 2 (V2 i __p2 V1 i) (11) 

where V2 r, Vl r and Vz ~, V1 ~ are the real and imaginary parts of the respective 
potentials. If the potentials under consideration are purely real, the im- 
aginary part can be put equal to zero, i.e. 

Therefore, 

or  

V2 ~ _ p 2  V1 i = 0 

2m [ 3 z~ Op 
h ~  p - 2 p 2 - q  }~Xl = 0  

p3 _ 2p2 = q2 (1 la) 

Eliminating q from equation (10) we get 

OZp l [ O p ]  2 2 m 2 ( p - 1 ) ( 3 - p )  4m.  2 
p ~ x 2 - ~ \ ~ ]  + hZ(p_2)~ = ~ ( V z - p  Vl) (12) 

This is a standard nonlinear differential equation in p whose solutions are 
usually automorphic functions (Davis, 1961). The solution must also satisfy 
(4) and (gb), which is true in the case of automorphic functions. 

We therefore assume 

p + iq = A exp {-~o[(x 1 -}- ita),g2,g3]} + B + iC(tx) 

p -- iq = A exp {-fa[(Xl - itx),gz,g3]} + B - iC(tl) (13) 
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where A, B are some constants, and ~a is a Weierstrass function with 
invariants g2 and g3. Such functions are doubly periodic and have the 
property 

ga(x) = p(x  + iK') = p(x  + K)  

where K '  and K are the imaginary and real periods. 
From (13) we have 

A 
p = ~ {exp [-~o(xt + it1)] + exp [-~o(xx -= iq)]} + B (14) 

q = A{exp [-ga(xl + #1)] - exp [-~o(x 1 - -  it1)]} + C(tl) 

Because of the double periodicity, the average of ~a over a time period To 
is identical, i.e. p(x  + iTo) = ~a(x - iTo), and we can write 

and 
p = A exp [-fa(xl)l + B 

q = C(h )  

(14a) 

Introducing (14) into (12), we get 

4 m  
h~- (/12 _ p Z  V~) = A exp [-~o(x~)]{A exp [-~o(xl)] + B}[4fa 3 - 6go 2 - 4] 

A z 
2 exp [-2~o(xl)]4[{fa(xl} 3 - 1] 

2rn z {A exp [-~o(xl)] + B -  1}{3 - (A exp [-p(xl)] +B)} 
h2 A exp [ - ga(xl )] + B - 2 

(15) 

The solution of equation (12) is further simplified by assuming the 
Weierstrass functions to be of the equi-anharmonic type, i.e. g2 = 0. This 
solution is in fact identical with the mapping functions used by Ramanna 
(1968a, b) and gives rise, as shown later, to an array of equilateral triangles. 
We write the left-hand side of (15) as 

4m Tz r ~ ,  r Vz(x2) 11 

H e r e ,  V2(x2) is the potential existing in the second domain and is a function 
of the coordinates of that domain. In the region of the overlap, for every 
value of x2 there is a corresponding value of x~; x~, x2, being coordinates 
of an identical point in the two systems. At this point the potentials must 
be identical, and we can therefore write Vz(xz) = SVI (x l ) ,  where S is a 
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constant which normalises the two coordinate systems. Equation (12) now 
reads 

4m A{exp(-~o)}p(@ 3 - 6p 2 - 4) 2AZ{exp(_2~o)} (~3 _ 1) 
h~ Vl (xl) - S - p2 - S - pZ 

2rn z (p - 1)(p - 3) 
+ hZ ( p _  2 ) ( p 2 _  S) (16) 

I f  the solution of equation (12) is an automorphic function, to which class 
Weierstrass functions belong, they are invariant to group transformations 
of  the type (Davis, 1961) 

a x + b  
Z -  

c x + d  

where a, b, c and d are constants. 
We now consider two cases which are modular  transformations of one 
another, both having real values 

ga u = ~(x,0,4) (lYa) 

~ae = p(x, 0 , -108)  (17b) 

(17b) can also be written as 

ga e = -3~o [i~/(3) x, 0, 41 (18) 

In terms of elliptic functions these two functions correspond to elliptic 
integrals of  the first kind with modulus of  sin 15 ~ and its conjugate of  sin 75~ 
The functions (17a) and (17b) have been tabulated by Greenhill & Haddock 
(1886a). 

We now consider the following boundary condition concerning the two 
domains. At xl = 0, 

axl 
P =  ~x2= A e x p ( - 1 )  + B 

Therefore 
Xl 

f axl A exp [-ga(xx)] + B = x 2  -t- R 0 

o 

where R 0 is a constant of integration which corresponds to the limit of  
the boundary of the second domain. At this point ~bz(x2) = 0, i.e. oJ = 0. In 
equation (7), if  ~o = O, V2 - V I p  2 = 0, i.e. [Aexp(--1) + B ]  2 = V 2 / V  1 = S .  

In this way the values of  A and B determine the value of S. In Fig. 1 
the values of  V1 for different values of  A and B are given. Two cases are 
considered, one in which the A's are positive and B's  negative, and the 
other in which the A's are negative and B's  positive. For  reason to be given 
later, we call the former as the neutron case and the latter the proton case. 
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We note the following remarkable facts: 

(a) It is seen that as x -+ 0 and x -+ R0 for the neutron and proton case, 
respectively, the value of V1 tends to §  and this results from the first of  
the three terms of the right-hand side of  equation (16). In this equation 
the first two terms involve h 2 and can be considered to arise from quantum 
mechanical reasons, and we may therefore conjecture that the strong 
repulsive term at short distances is a quantum mechanical effect. In the 
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Figure 1.--The many-body neutron and proton potentials for some values of the 
parameters A and B. 

second case V~ --> oo as x -+ R0, a constant which results from the group 
transformation corresponding to a translation of the origin of  coordinates 
compared to the first case. The general behaviour of  the potential is mainly 
determined by the third term in the right-hand side of equation (16), as 
the first two terms rapidly decrease with distance. 

(b) For a given value of  A and B in the neutron case the potential rapidly 
falls from + ~  becomes attractive and finally saturates to a small negative 
value. For the same value of  A and B, but of  opposite sign in the proton 
case, the potential rapidly falls from +0% becomes attractive, becomes 
repulsive again and saturates to a small positive value. For values of  A 
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less t h a n  16e the  C o u l o m b  t e r m  is c lear ly  e v i d e n t  in  t he  case  o f  p r o t o n s ,  

whi le  n o n e  exis ts  fo r  the  n e u t r o n  case.  H e n c e  w i t h  on ly  o n e  f u n c t i o n  a n d  

TABLE 1. Values of neutron and proton potential for given values of A and B. 

R O(x) p VN R p(x) p Vp 

0 1'0000 -2"1000 
1 t'0001 -2"1025 -367"30 
2 1 " 0 0 0 5  -2"1058 -158-26 
3 1 " 0 0 1 2  -2"1156 -58"88 
4 1.0023 -2"1253 -36.32 
5 1.0033 -2.1384 -23.94 
6 1.0047 -2"1547 -16'82 
7 1 " 0 0 6 5  -2"1775 -11"88 
8 1 " 0 0 8 6  -2"2036 -8 '89 
9 1 " 0 1 1 0  -2"2297 -7.11 

10 1 " 0 1 3 6  -2"2623 -5 '69 
11 1 " 0 1 6 5  -2"2950 -4"74 
12 1.0197 -2-3341 -3.95 
13 1 " 0 2 3 2  -2"3765 -3 '35 
14 1 " 0 2 6 9  -2"4189 -2'91 
15 1'0310 -2.4646 -2"55 
16 1 " 0 3 5 3  -2.5168 -2 '23 
17 1 " 0 4 0 0  -2'5690 -1.99 
18 1 " 0 4 4 8  -2'6244 -1.78 
19 1 - 0 5 0 1  -2"6964 -1.57 
20 1 " 0 5 5 6  -2"7484 -1 '44  
25 1 " 0 8 7 7  -3'1072 -0 '94 
30 1 " 1 2 8 1  -3"5443 -0 '66 
35 1 . 1 7 7 1  -4"0466 -0"49 
40 1'2356 -4"6175 -0"38 
50 1'3851 -5"9353 -0-34 
60 1'5875 -7"4326 -0"18 
70 1'8586 -9'0146 -0"14 
80 2'2268 -10'5813 -0'11 

100 3-4453 -13"0105 -0 '08 
120 6 " 1 0 7 2  -14"0282 -0 '08 
180 -14"1000 -0 '08 

74 0.9840 - -  

75 1 " 0 5 4 8  2 " 7 3 8 6  -0"199 

76 1 " 1 2 7 4  3 " 5 3 4 5  +0"109 

77 1 " 1 9 9 4  4"2685 0"132 

78 1 " 2 7 2 0  4"9567 0'130 

79 1 " 3 4 6 7  5"6156 0"122 

80 1 " 4 2 3 2  6"2419 0'116 

81 1 " 4 9 4 0  6"7769 0'110 

82 1 " 5 6 9 3  7-3086 0'104 

83 1 " 6 4 4 0  7.7978 0'100 

84 1 " 7 2 0 2  8"2611 0"096 

85 1 " 7 9 7 0  8-6917 0"092 

86 1.8747 9"0733 0'089 

87 1 " 9 5 3 3  9"4582 0"086 

88 2 " 0 3 3 1  9"6866 0.085 

89 2 " 1 1 4 1  10"1041 0'082 

90 2.1960 10"4727 0"079 

100 3 " 1 0 8 3  12"6289 0'068 

105 3 " 6 5 4 6  13.2943 0'065 

110 4'2999 13.6564 0"064 

115 5'0583 13.9010 0-063 

120 6 " 0 0 0 0  14'0185 0"062 

180 14'1000 0"062 

Note: 

R is given by 

A = +12e = 32.6196 

B = -14"1 

A = -12e = -32-6196 

B = +14-1 

x =  1 - i g  6 ~o~=1~o2  

where co2 = 1"2143 (Greenhill, 1886a). 
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two constants it is possible to obtain the familiar form of the nuclear 
potentials. The parameters A and B are obviously connected with meson 
interactions and are not discussed here. 

Table 1 gives the behaviour of the potential for A = +12e, B = -14.1 
(neutron case) and A = -12e, B = +14.1 (proton case). It should be noted 
that as defined in equations (1) and (2) the V's are negative, i.e. it is attractive 
when V is positive and repulsive when negative. It would therefore seem 
that equation (16) and its implications hold only for particles of negative 
mass. This restriction, however, is not true, and the theory holds equally 
for particles of positive and negative mass. This is due to the invariance 
of equations (1), (2) and (12) to transformations of the type x = --x and 
t = - t  if V ( - x ) = -  V(x). 

Since a strong repulsion term at the origin is ascribed in nuclear theory 
to the Pauli principle, we conjecture that the Pauli principle arises from 
the geometry of the partial differential equations. To substantiate this 
conjecture, the spin-states will have to be introduced explicitly and it has 
to be shown that the effect of the principle persists even when the total 
spin of the system is zero. Such a possibility exists when one uses the third- 
type elliptical integrals as discussed by Ramanna (1968a, b). 

The potentials arrived at by these geometrical descriptions give rise to 
a saturation effect, in that one domain can overlap with only three other 
domains and no more. This results from the choice of the Weierstrass 
functions and is discussed later. The long-range Coulomb repulsive term 
in the case of proton is clearly evident. The difference between the neutron 
and proton case arises from the fact that we have introduced a rotation 
of 120 ~ equivalent to a group transformation in the respective coordinate 
systems, agreeing with the rotation of the mapping used by Ramanna 
(1968a, b) where only two such positions give rise to real solutions. 

It is to be noted, that while we have considered only two Schr6dinger 
equations, the assumption of Weierstrass functions is valid for a whole 
array of domains, and the nature of the array depends on the type of 
doubly periodic function that is assumed. In this sense the potential, given 
by equation (16), is a combined effect of many bodies and does not merely 
correspond to the two-nucleon systems. We show later that the equi- 
anharmonic case used above produces an array of lattice points which gives 
rise to a shell structure that is somewhat close to that observed in nuclear 
structure. 

We now show that the choice of harmonic functions for the coordinate 
transformation automatically minimises the total energy of the system if 
they are described by Schr6dinger equations. To show this in an elegant 
manner and to arrive at the energies of the systems directly without a 
knowledge of ~b we have to make use of the calculus of differential forms 
and the Dirichlet principle. 

From the calculus of differential forms (Ahlfors & Sario, 1960) we have 
that if ~o~, is a one-form in two dimensions, i.e. oJ 1 = aLdx~ + b~dyi, where 
al and b~ are complex valued functions over some domain hi, and if hi 

25 
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and h2 are overlapping domains then the corresponding forms 
co 1 = a 1 d x  I 4- bl dyl and coz = a2dx2 4- b2dy2 are connected by the relations 

OX2 Oy2 
a ,  = + 

OXl 

and (19) 

ON2 072 
b 1 = a  2~y~ 4- b 2~y-~ 

Similar relations hold for other overlapping domains. Writing in general 
co = adx  + bdy, the exterior derivative is given by 

Ob Oa] dx (20) 

since dxdx  = dydy  = 0, and dydx  = - d x d y  by the algebra of differential 
forms. 

If  col, co2 are defined over a Riemann surface, the following relations 
also hold" 

and 

ON2 OY2 

OX2 Oy2 
a1 = - b ,  Oy-~l + az ofilyl (19a) 

The invariance of co implies the invariance of the conjugate differential 
co = - b d x  + adv. 

Let 05* be the complex conjugate of co*, the conjugate differential of co, 
i.e. o3" = - b d x  + ddy, where ~ and b are complex conjugates of a and b 
respectively. Then the integral 

I =  f co05" = f (laI 2 + ]b[Z)dxdy 
D D 

is finite and positive. It can be seen that this is a Dirichlet integral and by 
the Dirichlet principle it takes a minimal value if [[a[ 2 + [b] 2] is a harmonic 
function. The type of functions the integrand can take depends on the 
Riemann manifold chosen, i.e. one gets spherical harmonics if the Riemann 
surface is that of the sphere, doubly-periodic functions (elliptic integrals) 
if the surface is that of a torus, and other meromorphic functions for higher 
punctured surfaces. The Dirichlet principle also ensures that this integral 
is invariant under conformal transformations. If the forms co and 05* are 
closed, then rico = 0 and d05" = 0. 

We now write a set of Schr6dinger equations and their complex conjugates 
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into their respective differential forms and compare with the differential 
forms defined above. The Schr/Sdinger equation can be written as follows 

Hop r t) - ih O~b(x, t) at 0 (21) 

where ~b(x, t) is a complex 
is the energy operator. 

Hop ~b(x, 

Comparing this with 

(when co is closed doJ = 0), 

valued function of space x and time t, and Hop 

t ) d tdx  - Hop$(x, t) d tdx  = 0 

and putting x = t and y = x, one finds 

(22) 

Ob Oa 
= Hoo ~(x, t) - ~x (23) 

If, similarly, one compares the conjugate equation 

[Hop ~b(x, t)]* dt dx - [Hop ~b(x, t)]* dt dx = 0 

aa a&  + )dtdx=0 
with 

one gets 

(24) 

- 0~ = [Hop ~(x, t)]* = 07 (25) 

where [Hop ~b(x, t)]* is the complex conjugate of Hop~b(x, t). It would seem 
that in the derivation of (23) and (25) the theory holds for all types of 
operators. But since a and b are just functions, the operator must be a 
scalar only. Hence only the energy operator is permitted. 

From (23) and (25), one gets 

a = f Hop ~b(x, t) dx +f~(t) 

d = ~ [Hop ~b(x, t)]* dt + fa(x) 
(26) 

b = f Hop ~b(x, t) dt + fb(x) 

= - ( [Ho. ~b(x, t)]* dx +fg(t) b 

Since ad and bb are real, one can get 

f~(t) = f Hop~b(x,t)dt, fa(x) = complex conjugate o f f  Ho~ ~b( x, t ) dx 

f~(x) = -- f Hop ~b(x, t) dx 
. I  
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and 

Rewriting 
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f~(t) = complex conjugate of f Hop r t) dt 

a =  Hx + H ,  d =  Hx* + Ht* 

b = - H ~  + I f , ,  b = - H ~ *  + H,* 

where the notation is obvious, one gets 

ad = Hx H~* + Ht Ht* + Hx Ht* + Hx* Ht 

bb = Hx Hx* + 1t, H,* - Hx I-l,* - Hx* 11, 

so that 

(27) 

(28) 

aa + bb = 2(H~ H~* + H~ H,*) 

+ f Hopr f {(Hovr (29) 

The positive square root of the integral, 

f ]al 2 + [bladxdt 

i.e. the norm l] c~ gives the interaction energy E within a domain. The total 
interaction energy is given by the sum of the norms for each domain. By 
the Dirichlet principle, if the integrands of I are harmonic functions the 
total energy is minimised. I f  on quantum mechanical prescriptions we had 
defined the a's and b's with respect to r Ho , r  and not just Ho,r  we would 
directly get 

laJ 2 + Ibl 2 = E 2  

Since Weierstrass functions are harmonic, we can use them to minimise 
the Dirichlet integral. We therefore assume 

a + ib = p(x + it)t (30) 
a - ib = ~(x - it)J 

where the a 's  and b's are defined to include the constants A and B defined 
in (13) and p is the same function used earlier. I f  the Weierstrass functions 
are equi-anharmonic, one gets an array of equilateral triangles, correspond- 
ing to equal symmetrical domains in a space-time plot (Fig. 2). This is seen 
by writing (Greenhill, 1886b) 

1 + ir~ 2 
~ ]  = -~o[(x + it), O, 4] 

1 -- ir] 2 
1 + ir] = - p [ ( x  -- it),0,4] 
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,~)' 

./.o" 
d I "  

Figure 2.--Array of equilateral triangles. Centroids generated by equi-anharmonic 
Weierstrass functions. 

a n d  

x + it = cons t  ~r 3 - 4) 

= dn + dnCn(~ + i f i )F(O,k)  (31) 

where  dn = d is tance  f rom the cent re  o f  coord ina tes  to one  of  the corners  of  
the  t r iangle  

(~ + ifi) = cube  roo ts  o f  1 or  i, as the case m a y  be 

Cn = geometr ic  c o n s t a n t  d e t e rmi n i n g  the abso lu te  size o f  the  t r iangles  

1 + i r ]  = s 
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s -  [V(3) + 1] 
COS 0 = 

S +  [~/(3) - 11 

k = sin 15 ~ or sin75 ~ depending on whether (~ + ifl) is the cube root 
root of 1 or i 

Equation (31) is exactly the triangle function mapped out by Ramanna 
(1968a, b). Since 

[-~a(x + it)] [-~a(x - it)] = 1 (32) 

(a 2 -}- b E) is a constant and the total energy content of the domain is a 
constant. 

From (19) and (19a) it may be deduced that the energy of the neighbour- 
ing domain is given by 

= f  f (a, 2 + b,2)(p 2 +q2)dx2dt2 

From (30) and (32) 

g22=(a12+b12) f f ~x~X2]/~Xl~2 -[- ~ 2 7  ~0Xl~2 dx2dt2 
and since 

At- dx2dt 2 = f f dxldt 1 (33) 

E22 = El 2. Equation (33) follows from the Dirichlet principle (Weyl, 1955), 
which also states that the integral is invariant to conformal transformations 
and the fact that the two coordinate systems are conformal to one another 
by definition. 

Equation (31) produces a whole array of triangles, and the fact that each 
domain overlaps with three neighbours is a consequence of the three values 
of ~/1 and ~/i, as the case may be, which produce kaleidoscopic figures. 
Hence the choice of Weierstrass functions directly leads to a saturation 
effect. 

In the present analysis the choice of simple Weierstrass function leads 
to a constant interaction energy in each domain. If, however, higher 
harmonic functions such as elliptic modular functions are used, one gets 
an array of equilateral, equiangular curvilinear triangles, decreasing 
asymptotically in size (Ford, 1951). This, in principle, can be used in cases 
where the potentials are such that they distort the geometry of the whole 
system. 

In order to determine the Coulomb and binding energies of actual stable 
nuclei we consider the situation where we can associate the centroids of 
each of the triangles with the average position of a nucleon occupying the 
domain. For  each average position and time x and t, respectively, there 
is a corresponding value of d, and 0 given by equation (31). It is seen in 
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Fig. 3 that the centroids can themselves be arranged in the form of con- 
centric triangles. The centre of  coordinates itself is the first centroid and 
is associated with two nucleons of opposite spin. In the triangle around 
it there are three nucleon pairs and in the third, fourth and fifth triangle 
shells there are, respectively, twelve, eighteen and twenty-one nucleon pairs. 

REGION OF 

START 

Figure 3.--Average position of nucleon pair. The distance A~vPN is a measure of the 
energy of the system. Magic number positions are enclosed in a dark circle. 

The side of  each triangle is generated as 0 takes values from 0 to rr and 
hence for each shell 0 moves f rom 0 to rr three times. We adopt  a clock-wise 
convention to enumerate in a continuous manner the nucleon pair positions. 
If, therefore, we plot the number of  nucleon pairs N against 0, for every 
range of values of  0 from 0 to 3~-, we get an increasing vaIue of (dN/dO), 
for each n, where n represents the triangle shell number. From equation 
(31) the amount  of  energy associated with each nucleon is given by 

E = d. CoV(~ 2 +/32) F(O, tc) (34) 
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since for each point (x, t) occupied by a nucleon pair, the energy is increased 
by an equal amount. Geometrically the increase in the energy with the 
addition of each nucleon is equal to the distance between neighbouring 
centroids ANI PNI, etc. (Fig. 3). 

We define another angle ~ proportional to the nucleon pair number with 
a range from 0 to 7r/2 for the entire range of values of 0 

Instead of calculating E, we derive an expression for the average energy 
per nucleon pair defined as follows: 

E_f 
Hence 

oc Average value of d,F[~/go~,k] 

~, An r(~, k) 

where AN = ~/(~2 + f12) C,. 
Hence the average energies for a neutron and proton system taken 

separately are given by 
Es = ANF(~m k) t (35) 
Ev Asr(~v ,  k')~ 

where k = sin 15 ~ and k '  = sin 75~ 
The systems we have considered represent an unreal situation, in as far 

as neutrons and protons do not form stable nuclei separately. In order to 
apply the theory to a more realistic situation without introducing further 
complications to its description, we first consider only spinless systems. By 
a spinless system is meant that the spin of the nucleon is neglected, and 
for comparison with the actual situatiol~ only indistinguishable pairs of 
nucleons of opposite spin are considered, and with each domain is associated 
a spinless nucleon pair. As shown by Ramanna (1968a, b), a solution 
involving a higher Weierstrass function is required if one is to consider 
systems with spin. We also make the following assumptions. 

(a) Nuclear forces are charge independent, i.e. the total interaction 
energies of the neutron and proton systems are identical except for the 
Coulomb charge. 

(b) By considering only time independent situations all information 
about radioactive nuclei is lost. We have therefore to assume that the range 
of values of ~ which lie between 0 and ~r/2 is restricted to known stable 
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nuclei, i.e. the maximum value of the neutron No = 126 and the maximum 
value of the proton number Z o = 82. We therefore write 

N - 2  
~b"eut'~ - N00 _ 2 rr/2 (36) 

and 
Z - 2  

qSproton Zo_ 2Krr/2 (37) 

where K is some constant. ( N -  2) and (Z - 2 ) a r e  used instead of N or 
Z to account for the fact that the first stable spinless system is the He 4 
nucleus. 

I00 

8o 

IE 

Z 60! 
Z - �9 �9 
O 

40 

20 

t f I t I I I I I ~ I I I I I ~ [ 
20 40 60 80 100 120 [ 40 160 180 200 220 

MASS N U M B E R  A 

Figure 4.--The neutron-proton ratios of/3-stable nuclei. The continuous line shows the 
theoretical predictions. 

(c) By the use of  the Dirichlet principle, the energies of the neutron and 
proton system have been minimised separately and it is now necessary to 
consider the condition of stability when the two systems are coupled to 
form stable nuclei. This stability must correspond to the coupled system 
having the minimum potential energy. In the coupled system, E N is a 
function of Z and Ep is a function of N. For  a given neutron number 
O/Oz(EN + Ev) = 0, i.e. EN + Ep a constant. In order to obtain all the fl-stable 
nuclei, we set EN + E~ = 0. Figure 4 gives the neutron-proton ratios for 
the value of K = 0.76 from the relation 

F(~bN, 15 ~ = F(~p, 75 ~ (38) 

with the ~'s defined as in (37). Since the triangular domains for proton 
are rotated by 60 ~ with respect to the neutron triangles, each coupled 
neutron-proton pair gives rise to a star. 

26 
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It is clear that if EN + Ep had been chosen to be a constant other than 
zero, depending on the value of this constant, it is possible to obtain families 
of  nuclei which are neighbours to the fl-stable nuclei. 

We interpret equation (35) as to give the energy of  a proton with a 
nuclear term E~,' and a Coulomb term Ec, i.e. 

Ec + Ep' = AuF(~p, 75 ~ 
and 

Ec - Ec(He 4) = A N V(q~,, 75 ~ - ~ '  

It is necessary to subtract the Coulomb energy of the He 4 nucleus from 
the total Coulomb energy, since the interaction energy of the He 4 nucleus 
is undefined, being the first of the spinless systems. From the assumption 
o f  charge-independence we write 

Ee' = Ae r((~p, 15 ~ 

which means that the behaviour of the proton energy when devoid of  its 
charge is identical with that of the neutron energy--except for the normali- 
sation constant, which we write as Ap instead of AN. Therefore 

Ec - Ec(He 4) = Q[ANF(~N, 153 -- ApF(~x,, 15~ 

~-- Q[AN ~N -- ApSe] (39) 

since F(~, 15~ ~; and Q is a constant of  normalisation. 
We define the binding energy as that part of the nuclear energy from 

each system which contributes to keeping the system together. The rest of  
the nuclear energy is used to compensate the Coulomb repulsion. Hence 
we write 

EB -- EB(He 4) = pq EN + I~z Ee' (40) 

where EB = the binding energy 

En(He a) = the binding energy of  the He 4 nucleus which is subtracted for 
reasons given earlier 

/z 1 and/z 2 = two fractions which determine the amount of nuclear energy 
available for binding from each system respectively. 

We assume that 

K A P  (N o  - 2) ~ = 1 (41) 

i.e. the ratio AN/Ap of  the geometric constants AN and Ae, which determine 
the absolute size of  the domains gives the maximum neutron and proton 
numbers directly. 

Equation (39) becomes 

E c -  Ec(He4)=NQA__2 2 ( N - - Z  ) (42) 
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The unnormalised values of Ec are given in Table 2 and compared with 
the classical values of Z ( Z -  1)/ro Al/3 predicting approximately the usual, 
empirically assumed variation in the value of radius parameter ro. In 
column 10 of Table 2, the values of ro are given when Ec(He 4) is neglected. 

Using equations (36), (37) and (41), equation (40) becomes 

EB -- En(ne 4) = P~I AN ~N -}- IA2 Ap ~e 

tzt AN or 
N~__ 2 ~ [ ( N - 2 )  + ~212(Z- 2) ] (43) 

1500 

> -  
1000 

t .u  
Z 
t .u  

O 
Z 

Z 

50( 

I I I ! 

50 100 150 200 

MASS NUMBER A 

Figure 5 . - -The binding energies predicted by the theory compared with experimental 
points. 

The values Of EB are given in Table 2 and in Fig. 5, with the assumption 

/Z~AN or 1 and /z t 1 
N o -  22 /x2 18 

The Coulomb energy can also be written as 

Ec - Ec(He 4) = (1 -/~1) EN + ~(1 --/x2) Ep' (44) 

which asserts that of the total nuclear energy available, part of it is used 
to compensate the repulsive Coulomb energy. The constant c~ is introduced 
to take into account that this compensation comes differently from the two 
systems. Equation (44) also defines the binding energy in the usual form 
EB = aEN + bEp' - eEo  
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Comparing equation (39) with equation (44), and using equation (41), 
we get 

Q(AN q~N - Ae ~p) = (1 - / z , )  AN ~N + ~(1 - b~z)A~ q~e 

i.e. 

AN ~j~, Q + c~(1 -/~2) 
Ap~,  Q -  1 +/zl 

As Q, e,/x 1 and/~2 are constants independent of~N and q~e, 

since 

Q = 1 - / z  t = e(/~z - 1) 

/~1 AN ~r 1 
N0-22 

(45) 

if  AN is known,/~1 and Q are determined. If  Ap is also known, K is deter- 
mined from equation (41). Hence if AN, Ap and a are known, all the constants 
are determined. Since the time dependence of the equations has been 
neglected, the maximum neutron and proton number No = 126 and Z0 = 82 
of stable nuclei have been assumed. 

The fits are also consistent with the value of EB(He 4) = 28-288 MeV. 
No attempt has been made to get exact fits to experimental results, as this 
would not be justified in view of the very simple assumptions involved. The 
comparisons are made to show the closeness of the predictions to the 
measured values in spite of the very general nature of the theory. 

It is seen from the enumeration of the lattice points (Fig. 3) that a shell 
structure is evident. For nucleon numbers greater than 28 there is only one 
magic number in each shell. While they do not all fall on tile corners of 
the triangles, they almost all seem to do so. This structure would have shown 
itself in the binding energies if we had chosen E and no t /?  from equation 
(35). These results have been obtained from a chosen geometrical structure 
of the Schr0dinger equations, which is consistent with the usual nuclear 
potential. It is possible that a higher geometry will predict the position of 
the shell numbers even more exactly. 

The extension of the theory to systems with spin, radioactive (time depen- 
dent) nuclei and atomic structure is being investigated. The main purpose 
of this work is to show that nuclear problems can be studied without refer- 
ence to any models but with the choice of appropriate manifolds which, as 
shown here, are strictly equivalent to many body potentials. The present 
method, which is in the spirit of the Erlanger programme of Felix Klein 
(1872), seems to offer a powerful and elegant approach to many-body prob- 
lems in general, and in particular a simple and elegant method of studying 
nuclear many-body problems, where the very existence of short-range forces 
probably implies a simple geometry. 
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Appendix 

In equation (6) if we assume that &o/Otl = 0 we get 

10oJ 1 0 p  1 31) mi 
coOx, ~ 2pOx~ 2qOtl-~q(1 

~ p )  (A.1) 

q l Oco q Op 10p mi 
+ (1 - p )  (A.2) 

pcoOXl 2p 20xl 2pOt1 hp 

Differentiating (A.1) with respect to Xl, (A.2) with respect to tl and adding, 
we get 

1 02 co 2q 1 02 O.) 
O) 0Xl 2 ~- p O~ OXl Otl 

1{0r 2 2 3~0 (~ 0p q Op) l OZp 
= 09 -~  \OXl] t..O OX 1 OX 1 p2 ~1 2p Ox12 

( 1 l]{ap]2 l a2p 1 [Op] 2___miOp + _ - ~ +  
2~ kO~x fl hqOx~ 2qZ] kOt~] -~- p Otl 2 

( 2 q _ q '  ~ 02p 2q Op Op mi -P)~t~ 2miOp 
+ p2] OX 10t 1 "~- p30Xl Otl + ~ (1 hp 20tl 

Substituting in (7) we get 

1 ~Ocox~ 2 20o)[10p q_Opl 10Zp 1 {Op] 2 
o, ~ kax,l ~o ax, ~p Ux~ p2 G )  2p OXl 2 ~ \~xl] 

( 1 1 ]{Op'~ 2 132p (1 q ) 0 2 p  _ m i @ +  - ~ +  + 
hqOx, 2q2]kOt,] "J-p~l  2 2 - q - - ~  Ox, Ot 1 

2q 0t90p + mi Op 2mi 0t7 2m 
+p3Ox, Ot, hq 2(1 -P)3h hp z at, + h ~  (V2-p2VO 

1 am (1 31) q ap 2mqi] 
+ ~ 3~Xl \p ~xl +)5 ~ + -~p2 ) = 0 (A.3) 

Eliminating Oco/3x, using (A. 1), we get, after some simplification, 
. . . .  m2 

4~ \O~x~f 2p Ox~ 2 h S p ~  (1 - 2q2) 2p3q Ox, Ot~ 

2m mi Op - 2 q  2 02p 
+ ~ (v~ - p~ v , )  ~ hp ~ q ~T, (p3 _ 2p~ _ qb + p~ 2qp 2 Ox~ Ot~ 

+ (3p z + 2q 2) {Op~ 2 , 10Zp mi 2 2 Op 
4p2q 2 \Ot,] + p 0 ~ 1 2 + ~  {2(p +q )-p(2pZ + 3q2)}-~l=O 

(A.4) 
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In  a t ime-independent  case let us assume that  

1 0 2p + (3p2 + 2q2) { Op ]2 _ 2 q 2 0 Z p  
p ~ S z  2pZq2 ~11!  + p 2  2qp 2 OX 10tl 

2pZ--q z Op Op mi 2 2 ~P_ 
2p3q aXl Otl + ~ {2(p + q ) - -p (2p  2 + 3q2)} ~'1 = 0 

SO that  (A.4) becomes 

OZp 2m 2 
l { O P ] Z + h ~ q z ( p -  1)(p 3 - p z - z q 2 )  

2mi : p  4m _p2  V~) (A.5) hpq (p3 _ 2pZ _ q2) = ~I 2 ( Vz 

Equat ion  (A.5) split up into real and imaginary  parts  yields equations (10) 
and (11). 
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